000 03459cam a2200529 i 4500
003 BR-SpNIC
005 20240807184051.0
008 240720t20232023cc a b 001 0 eng d
010 _a 2023549175
015 _aGBC2G2773
_2bnb
016 7 _a020744694
_2Uk
020 _a9781098125974
_q(paperback)
020 _a1098125975
_q(paperback)
035 _a(OCoLC)on1346503549
040 _aUKMGB
_beng
_erda
_cUKMGB
_dYDX
_dOCLCF
_dTOH
_dVNVGU
_dVP@
_dOCLCO
_dKMS
_dORZ
_dCDX
_dOCLCQ
_dDLC
042 _alccopycat
050 0 0 _aQA76.73.P98
_bG45 2023
082 0 4 _a006.31
_223
090 _a006.31
_bG377h
100 1 _aGéron, Aurélien,
_eauthor.
245 1 0 _aHands-on machine learning with Scikit-Learn, Keras and TensorFlow :
_bconcepts, tools, and techniques to build intelligent systems /
_cAurélien Géron.
250 _aThird edition.
264 1 _aBeijing :
_bO'Reilly Media, Inc.,
_c2023.
264 4 _c©2023
300 _axxv, 834 pages :
_billustrations (chiefly color) ;
_c24 cm
336 _atext
_btxt
_2rdacontent
336 _astill image
_bsti
_2rdacontent
337 _aunmediated
_bn
_2rdamedia
338 _avolume
_bnc
_2rdacarrier
500 _aPrevious editions: 2019, 2017.
505 0 _aThe fundamentals of machine learning. The machine learning landscape ; End-to-end machine learning project ; Classification ; Training models ; Support vector machines ; Decision trees ; Ensemble learning and random forests ; Dimensionality reduction ; Unsupervised learning techniques -- Neural networks and deep learning. Introduction to artificial neural networks with Keras ; Training deep neural networks ; Custom models and training with TensorFlow ; Loading and preprocessing data with TensorFlow ; Deep computer vision using convolutional neural networks ; Processing sequences using RNNs and CNNs ; Natural language processing with RNNs and attention ; Autoencoders, GANs, and diffusion models ; Reinforcement learning ; Training and deploying TensorFlow models at scale.
520 _a"Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This best-selling book uses concrete examples, minimal theory, and production-ready Python frameworks--scikit-learn, Keras, and TensorFlow--to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. With this updated third edition, author Aurelien Geron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout the book help you apply what you've learned. Programming experience is all you need to get started"--
_cPage 4 of cover.
630 0 0 _aTensorFlow.
650 0 _aPython (Computer program language)
650 0 _aMachine learning.
650 0 _aArtificial intelligence.
650 6 _aApprentissage automatique.
650 6 _aPython (Langage de programmation)
650 6 _aIntelligence artificielle.
650 7 _aartificial intelligence.
650 7 _aArtificial intelligence
650 7 _aMachine learning
650 7 _aPython (Computer program language)
906 _a7
_bcbc
_ccopycat
_d2
_encip
_f20
_gy-gencatlg
942 _2ddc
_cL
_k006.31
_mG377h
999 _c2704
_d2704